Attenzione! Questo articolo non viene aggiornato da più di 12 mesi.
Sistema di controllo dell’acquario basato su arduino
COMPONENTI
- Arduino Uno
- HD44780 – display LCD 16×2
- I2c Serial Module x display
- DS18B20 – Sonda di Temperatura Digitale
- DS3231 – time
- VBESTLIFE29748130zt – sensore PH
- IR reciever

/*
* alessandrobuzzi.com
*
* https://github.com/Arduino-IRremote/Arduino-IRremote/blob/master/examples/SimpleReceiver/SimpleReceiver.ino
*/
//#define DECODE_HASH // special decoder for all protocols
#define DECODE_NEC
#define IR_RECEIVE_PIN 7
#include <Arduino.h>
#include <IRremote.h>
#include <DS1307RTC.h> // Library for RTC Module
// Relay
const int SW1 = 8; // the Arduino pin, which connects to the IN pin of relay
const int SW2 = 9; // the Arduino pin, which connects to the IN pin of relay
const int SW3 = 10; // the Arduino pin, which connects to the IN pin of relay
// time night lights
const int OnHour = 18; //SET TIME TO ON RELAY (24 HOUR FORMAT)
const int OnMin = 1;
const int OffHour = 22; //SET TIME TO OFF RELAY
const int OffMin = 1;
// time sun lights
const int OnHour1 = 9; //SET TIME TO ON RELAY2 (24 HOUR FORMAT)
const int OnMin1 = 1;
const int OffHour1 = 18; //SET TIME TO OFF RELAY
const int OffMin1 = 1;
/// sensori e LCD
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#include <OneWire.h>
#include <DallasTemperature.h>
// inizializzazione della libreria in cui è descritta la modalità di utilizzo dei pin
LiquidCrystal_I2C lcd(0x27, 16, 2); // impostazione dell'indirizzo dell'LCD 0x27 di 16 caratteri e 2 linee
//-----------------------------
// Data wire is plugged into port 4 on the Arduino
#define ONE_WIRE_BUS 4
// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);
// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);
DeviceAddress sensor1 = { 0x28, 0x58, 0xA0, 0x96, 0x42, 0x20, 0x1, 0xAB };
DeviceAddress sensor2 = { 0x28, 0x62, 0x62, 0x9, 0x42, 0x20, 0x1, 0x53 };
//PH sensor
#define SensorPin A0 //pH meter Analog output to Arduino Analog Input 0
#define Offset 0.00 //deviation compensate
#define LED 13
#define samplingInterval 20
#define printInterval 800
#define ArrayLenth 40 //times of collection
int pHArray[ArrayLenth]; //Store the average value of the sensor feedback
int pHArrayIndex=0;
//---
// costanti per timing loop
int Period1, Period2;
unsigned long Time1, Time2;
void setup() {
Serial.begin(115200);
//Start the receiver, enable feedback LED and take LED feedback pin from the internal boards definition
IrReceiver.begin(IR_RECEIVE_PIN, ENABLE_LED_FEEDBACK, USE_DEFAULT_FEEDBACK_LED_PIN);
Serial.print(F("Ready to receive IR signals at pin "));
Serial.println(IR_RECEIVE_PIN);
// relays on
pinMode(SW1, OUTPUT);
pinMode(SW2, OUTPUT);
pinMode(SW3, OUTPUT);
digitalWrite(SW1, HIGH); // Relay is active low, so HIGH will turn it off at startup
digitalWrite(SW2, HIGH);
digitalWrite(SW3, HIGH);
//lcd e sensori
//lcd
lcd.begin(); // inizializzazione dell'LCD
lcd.backlight(); // attivazione della retroilluminazione
sensors.begin();
//timing loop
Time1 = Time2 = millis();
Period1 = 10000;
Period2 = 2000;
}
// time response IR
int on = 0;
unsigned long last = millis();
void loop() {
// ricevitore IR
if (IrReceiver.decode()) {
if (millis() - last > 1000) { /// time response IR
// Print a short summary of received data
IrReceiver.printIRResultShort(&Serial);
if (IrReceiver.decodedIRData.protocol == UNKNOWN) {
// We have an unknown protocol here, print more info
IrReceiver.printIRResultRawFormatted(&Serial, true);
}
Serial.println();
}// time response
last = millis();
//Enable receiving of the next value
IrReceiver.resume(); // Enable receiving of the next value
/*
* Finally, check the received data and perform actions according to the received command
*/
if (IrReceiver.decodedIRData.command == 0xC) {
// 1
digitalWrite(SW1, LOW);
} else if (IrReceiver.decodedIRData.command == 0x18) {
// 2
digitalWrite(SW1, HIGH);
}else if (IrReceiver.decodedIRData.command == 0x8) {
// 4
digitalWrite(SW2, LOW);
}else if (IrReceiver.decodedIRData.command == 0x1C) {
// 5
digitalWrite(SW2, HIGH);
}else if (IrReceiver.decodedIRData.command == 0x42) {
// 7
digitalWrite(SW3, LOW);
}else if (IrReceiver.decodedIRData.command == 0x52) {
// 8
digitalWrite(SW3, HIGH); // tasto 8
}else if (IrReceiver.decodedIRData.command == 0x9) {
// DOWN
digitalWrite(SW1, HIGH); // All off
digitalWrite(SW2, HIGH);
digitalWrite(SW3, HIGH);
}else if (IrReceiver.decodedIRData.command == 0x7) {
// UP
digitalWrite(SW1, LOW); // All on
digitalWrite(SW2, LOW);
digitalWrite(SW3, LOW);
}
}
//timer
tmElements_t tm;
RTC.read(tm);
//timerl luci base
if(tm.Hour == OnHour && tm.Minute == OnMin){
digitalWrite(SW1,HIGH);
Serial.println("LIGHT ON");
}
else if(tm.Hour == OffHour && tm.Minute == OffMin){
digitalWrite(SW1,LOW);
Serial.println("LIGHT OFF");
}
//timer luce notturna
if(tm.Hour == OnHour1 && tm.Minute == OnMin1){
digitalWrite(SW2,HIGH);
Serial.println("LIGHT ON");
}
else if(tm.Hour == OffHour1 && tm.Minute == OffMin1){
digitalWrite(SW2,LOW);
Serial.println("LIGHT OFF");
}
//Serial.print(tm.Hour);
//Serial.write(':');
//Serial.print(tm.Minute);
//Serial.println();
//delay(10000);
// define loop time
if(millis()-Time1>=Period1){
//Sensori e LCD
Serial.print("Requesting temperatures...");
sensors.requestTemperatures(); // Send the command to get temperatures
Serial.println("DONE");
Serial.print("Sensor 1(*C): ");
Serial.print(sensors.getTempC(sensor1));
Serial.print(" Sensor 1(*F): ");
Serial.println(sensors.getTempF(sensor1));
Serial.print("Sensor 2(*C): ");
Serial.print(sensors.getTempC(sensor2));
Serial.print(" Sensor 2(*F): ");
Serial.println(sensors.getTempF(sensor2));
//-----//
lcd.setCursor(0,0);
lcd.print("T: "); lcd.print(sensors.getTempC(sensor1));
lcd.setCursor(10,0);
lcd.print(""); lcd.print(sensors.getTempC(sensor2));
//--PH sensor
static unsigned long samplingTime = millis();
static unsigned long printTime = millis();
static float pHValue,voltage;
if(millis()-samplingTime > samplingInterval)
{
pHArray[pHArrayIndex++]=analogRead(SensorPin);
if(pHArrayIndex==ArrayLenth)pHArrayIndex=0;
voltage = avergearray(pHArray, ArrayLenth)*5.0/1024;
pHValue = 3.5*voltage+Offset;
samplingTime=millis();
}
if(millis() - printTime > printInterval) //Every 800 milliseconds, print a numerical, convert the state of the LED indicator
{
Serial.print("Voltage:");
Serial.print(voltage,2);
Serial.print(" pH value: ");
Serial.println(pHValue,2);
digitalWrite(LED,digitalRead(LED)^1);
printTime=millis();
// LCD display
lcd.setCursor(0,1);
lcd.print("PH: "); lcd.print(pHValue,2);
}
Time1=millis();
}
} //END VOID LOOP
// PH sensor function
double avergearray(int* arr, int number){
int i;
int max,min;
double avg;
long amount=0;
if(number<=0){
Serial.println("Error number for the array to avraging!/n");
return 0;
}
if(number<5){ //less than 5, calculated directly statistics
for(i=0;i<number;i++){
amount+=arr[i];
}
avg = amount/number;
return avg;
}else{
if(arr[0]<arr[1]){
min = arr[0];max=arr[1];
}
else{
min=arr[1];max=arr[0];
}
for(i=2;i<number;i++){
if(arr[i]<min){
amount+=min; //arr<min
min=arr[i];
}else {
if(arr[i]>max){
amount+=max; //arr>max
max=arr[i];
}else{
amount+=arr[i]; //min<=arr<=max
}
}//if
}//for
avg = (double)amount/(number-2);
}//if
return avg;
}